Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0298072, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38593116

RESUMO

As a result of oat (Avena sativa L.) × maize (Zea mays L.) crossing, maize chromosomes may not be completely eliminated at the early stages of embryogenesis, leading to the oat × maize addition (OMA) lines development. Introgression of maize chromosomes into oat genome can cause morphological and physiological modifications. The aim of the research was to evaluate the leaves' anatomy, chlorophyll a fluorescence, and yield parameter of oat doubled haploid (DH) and OMA lines obtained by oat × maize crossing. The present study examined two DH and two disomic OMA lines and revealed that they differ significantly in the majority of studied traits, apart from: the number of cells of the outer bundle sheath; light energy absorption; excitation energy trapped in PSII reaction centers; and energy dissipated from PSII. The OMA II line was characterized by larger size of single cells in the outer bundle sheath and greater number of seeds per plant among tested lines.


Assuntos
Avena , Zea mays , Zea mays/genética , Clorofila A , Avena/genética , Haploidia , Fluorescência , Clorofila
2.
J Exp Bot ; 74(14): 4225-4243, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37094092

RESUMO

Plant roots can exploit beneficial associations with soil-inhabiting microbes, promoting growth and expanding the immune capacity of the host plant. In this work, we aimed to provide new information on changes occurring in tomato interacting with the beneficial fungus Beauveria bassiana. The tomato leaf proteome revealed perturbed molecular pathways during the establishment of the plant-fungus relationship. In the early stages of colonization (5-7 d), proteins related to defense responses to the fungus were down-regulated and proteins related to calcium transport were up-regulated. At later time points (12-19 d after colonization), up-regulation of molecular pathways linked to protein/amino acid turnover and to biosynthesis of energy compounds suggests beneficial interaction enhancing plant growth and development. At the later stage, the profile of leaf hormones and related compounds was also investigated, highlighting up-regulation of those related to plant growth and defense. Finally, B. bassiana colonization was found to improve plant resistance to Botrytis cinerea, impacting plant oxidative damage. Overall, our findings further expand current knowledge on the possible mechanisms underlying the beneficial role of B. bassiana in tomato plants.


Assuntos
Beauveria , Solanum lycopersicum , Beauveria/fisiologia , Solanum lycopersicum/genética , Botrytis/fisiologia , Plantas , Desenvolvimento Vegetal , Doenças das Plantas/microbiologia
3.
Plants (Basel) ; 12(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36903901

RESUMO

Plants experience a wide array of external factors, some of which negatively affect their metabolism, growth, and development [...].

4.
Physiol Plant ; 175(1): e13855, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36648214

RESUMO

The aim was to identify subgenome-related specific responses in two types of triticale, that is, of the wheat-dominated genome (WDG) and rye-dominated genome (RDG), to water stress induced in the early phase (tillering) of plant growth. Higher activity of the primary metabolism of carbohydrates is a feature of the WDG type, while the dominance of the rye genome is associated with a higher activity of the secondary metabolism of phenolic compounds in the RDG type. The study analyzed carbohydrates and key enzymes of their synthesis, free phenolic compounds and carbohydrate-related components of the cell wall, monolignols, and shikimic acid (ShA), which is a key link between the primary and secondary metabolism of phenolic compounds. Under water stress, dominance of the wheat genome in the WDG type was manifested by an increased accumulation of the large subunit of Rubisco and sucrose phosphate synthase and a higher content of raffinose and stachyose compared with the RDG type. In dehydrated RDG plants, higher activity of L-phenylalanine ammonia lyase (PAL) and L-tyrosine ammonia lyase (TAL), as well as a higher level of ShA, free and cell wall-bound p-hydroxybenzoic acid, free homovanillic acid, free sinapic acid, and cell wall-bound syringic acid can be considered biochemical indicators of the dominance of the rye genome.


Assuntos
Desidratação , Fenilalanina Amônia-Liase , Fenilalanina Amônia-Liase/genética , Carboidratos , Plantas/metabolismo , Fenóis/metabolismo
5.
Sci Rep ; 12(1): 22486, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36577794

RESUMO

Glaucous (811, L35, and RXL10) and non-glaucous (811bw, L35bw, and RXL10bw) near-isogenic lines (NILs) of rye (Secale cereale L.) forming three pairs of inbred lines were the subject of the research. The research aimed to study the relationship between wax cover attributes and the physio-biochemical drought reactions and yield of rye NILs and to uncover the differences in drought resistance levels of these lines. The greatest differences between glaucous and non-glaucous NILs were observed in the RXL10/RXL10bw pair. Of particular note were the stable grain number and the thousand grain weight of the non-glaucous line RXL10bw under drought and the accompanying reactions, such as an approximately 60% increase in MDA and a two-fold increase in wax amount, both of which were significantly higher than in the glaucous line RXL10 and in other NILs. The surprisingly high level of MDA in the RXL10bw line requires further analysis. Moreover, additional wax crystal aggregates were found under drought conditions on the abaxial leaf surface of the glaucous lines 811 and RXL10. The use of rye NILs indicated that line-specific drought resistance could be associated with wax biosynthetic pathways involved in physiological and biochemical responses important for increased drought resistance.


Assuntos
Secas , Secale , Secale/genética , Folhas de Planta/fisiologia , Resistência à Seca
6.
Plants (Basel) ; 11(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36235410

RESUMO

Environmental changes are inevitable with time, but their intensification and diversification, occurring in the last several decades due to the combination of both natural and human-made causes, are really a matter of great apprehension. As a consequence, plants are exposed to a variety of abiotic stressors that contribute to their morpho-physiological, biochemical, and molecular alterations, which affects plant growth and development as well as the quality and productivity of crops. Thus, novel strategies are still being developed to meet the challenges of the modern world related to climate changes and natural ecosystem degradation. Innovative methods that have recently received special attention include eco-friendly, easily available, inexpensive, and, very often, plant-based methods. However, such approaches require better cognition and understanding of plant adaptations and acclimation mechanisms in response to adverse conditions. In this succinct review, we have highlighted defense mechanisms against external stimuli (mainly exposure to elevated levels of metal elements) which can be activated through permanent microevolutionary changes in metal-tolerant species or through exogenously applied priming agents that may ensure plant acclimation and thereby elevated stress resistance.

7.
PeerJ ; 10: e12854, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35178299

RESUMO

BACKGROUND: Development of new cultivars is one of the vital options for adapting agriculture to climate change, and the production of doubled haploid (DH) plants can make a significant contribution to accelerating the breeding process. Oat is one of the cereals with particular health benefits, but it unfortunately still remains recalcitrant to haploidization. Our previous studies have clearly demonstrated that post-pollination with hormone treatment is a key step in haploid production through wide hybridization and indicated it as the most effective method for this species. Therefore, we subsequently addressed the problem of the influence of 2,4-dichlorophenoxyacetic acid (2,4-D) concentration on consecutive stages of DH production. METHODS: Twenty-nine genotypes were tested, 9,465 florets were pollinated with maize pollen 2 days after emasculation and then treated with 2,4-D at 50 mg/L and 100 mg/L. RESULTS: The applied treatments did not reveal any differences in the number of obtained haploid embryos. However, almost twice as many haploid plants formed on MS medium after applying a higher auxin concentration and 20% more successfully acclimatized. Moreover, 100 mg/L 2,4-D treatment resulted in twice as many DH lines that produced almost three times more seeds compared to 50 mg/L treatment. Nevertheless, the results have confirmed the existence of strong genotypic variation, which may significantly limit the development of an effective and economically feasible method that could be incorporated into breeding programs.


Assuntos
Avena , Herbicidas , Avena/genética , Haploidia , Melhoramento Vegetal , Hibridização Genética , Fenoxiacetatos , Ácido 2,4-Diclorofenoxiacético/farmacologia
8.
Sci Rep ; 12(1): 548, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017602

RESUMO

A critical step in the production of doubled haploids is a conversion of the haploid embryos into plants. Our study aimed to recognize the reasons for the low germination rate of Avena sativa haploid embryos obtained by distant crossing with maize. Oat cultivars of 'Krezus' and 'Akt' were investigated regarding embryo anatomy, the endogenous phytohormone profiles, and antioxidant capacity. The zygotic embryos of oat were used as a reference. It was found that twenty-one days old haploid embryos were smaller and had a less advanced structure than zygotic ones. Morphology and anatomy modifications of haploid embryos were accompanied by extremely low levels of endogenous auxins. Higher levels of cytokinins, as well as tenfold higher cytokinin to auxin ratio in haploid than in zygotic embryos, may suggest an earlier stage of development of these former. Individual gibberellins reached higher values in 'Akt' haploid embryos than in the respective zygotic ones, while the differences in both types of 'Krezus' embryos were not noticed. Additionally to the hormonal regulation of haploid embryogenesis, the poor germination of oat haploid embryos can be a result of the overproduction of reactive oxygen species, and therefore higher levels of low molecular weight antioxidants and stress hormones.


Assuntos
Avena
9.
Methods Mol Biol ; 2287: 313-322, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34270039

RESUMO

Production of doubled haploids (DHs) by androgenesis is a promising and convenient alternative to traditionally used breeding techniques. Low response of anther culture and strong genotype dependency in the development of embryo-like structures (ELS) was reported for oat (Avena sativa L.). Total homozygosity has been reached in one generation. This chapter describes a step-by-step protocol that can be useful for androgenesis studies and oat DH line production through anther culture.


Assuntos
Apomixia/genética , Avena/genética , Engenharia Genética/métodos , Apomixia/fisiologia , Avena/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Genótipo , Haploidia , Melhoramento Vegetal/métodos , Reprodução Assexuada/genética
10.
Methods Mol Biol ; 2287: 323-332, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34270040

RESUMO

Wide hybridization is one of the haploid-inducing techniques that can accelerate the breeding process. Obtaining new cultivars is crucial to solve the problem of the constantly growing world population and global increase in demand for food, feed and renewable energy under changing environmental conditions. Here, we present a detailed protocol for obtaining oat (Avena sativa L.) doubled haploids (DHs) by pollination with maize (Zea mays L.). After fertilization, not only oat homozygotes, but also oat × maize hybrid zygotes can be formed, and during early embryo development, maize chromosomes are preferentially eliminated, which ultimately results in haploid plant formation. This chapter describes a method to produce oat DHs by crossing oat with maize, covering all steps from crossings to haploid plant regeneration and chromosome doubling.


Assuntos
Avena/genética , Hibridização Genética/genética , Zea mays/genética , Avena/crescimento & desenvolvimento , Cromossomos de Plantas/genética , Flores/crescimento & desenvolvimento , Engenharia Genética/métodos , Genótipo , Haploidia , Hibridização de Ácido Nucleico/métodos , Melhoramento Vegetal/métodos , Polinização , Sementes/genética , Zea mays/crescimento & desenvolvimento
11.
Sci Rep ; 11(1): 4135, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33603085

RESUMO

The present study investigated the response of non-metallicolous (NM) and metallicolous (M) Alyssum montanum shoots cultured in vitro on a medium supplemented simultaneously with heavy metals (HMs) to identify mechanisms involved in alleviating metal-induced damage. Plant status in respect to photosynthetic apparatus efficiency was determined and linked with changes in biochemical composition of shoots, namely phenolic acids' and stress-related phytohormones. Results showed the considerable inter-ecotype differences in (1) the photosynthetic pigments' amount, (2) the functioning of membrane electron transporters as well as (3) the linear and alternative electron transport pathways, whose lower values were reported in NM than in M HM-treated culture. Photosynthetic apparatus protection in M specimens was assured by the activation of cinnamic acid synthesis (by phenylalanine ammonia lyase) and its further transformations to benzoic acid derivatives with high ability to counteract oxidative stress, that was accompanied by the overexpression of jasmonic acid stimulating antioxidant machinery. In turn, detrimental HM effects on NM shoots could result from the diminution of most phenolics' accumulation, and only the content of coumarate (produced by bifunctional phenylalanine/tyrosine ammonia lyase) and rosmarinic acid increased. All these together with an enhanced concentration of abscisic acid might suggest that NM strategy to cope with HMs is based mostly on a restriction of metal movement with transpiration flow and their limited distribution in leaves. Summarizing, our findings for the first time point out the physiological and metabolic adaptation of pseudometallophyte A. montanum to adverse conditions.


Assuntos
Brassicaceae/metabolismo , Brassicaceae/fisiologia , Hidroxibenzoatos/metabolismo , Fotossíntese/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Antioxidantes/metabolismo , Ciclopentanos/metabolismo , Ecótipo , Metais Pesados/metabolismo , Estresse Oxidativo/fisiologia , Oxilipinas/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Poluentes do Solo/metabolismo
12.
Plants (Basel) ; 10(2)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525347

RESUMO

Oat (Avena sativa L.) cultivars 'Bingo' and 'Chwat' were used to compare the embryogenesis competence of another culture. Despite the embryo-like structures obtained from both tested cultivars, only 'Chwat' produced green plantlets, which confirmed the cultivar dependency. 'Chwat' produced the highest number of embryo-like structures and green plantlets (0.7/100 anthers and 0.1/100 anthers, respectively). The embryo-like structure formation also depended on cold pretreatment combined with Cu2+, Zn2+, or Ag+ ion supplementation, which was applied during the tiller pretreatment or added to the induction media. The highest number of embryo-like structures (2.1/100 anthers) were observed on anthers derived from the tillers kept in a 50% Hoagland medium with the addition of 10 µM of CuSO4. In turn, the induction media supplemented with the ions Cu2+, Zn2+, or Ag+ increased neither the number of embryo-like structures nor the green plantlet production compared to the control conditions. However, such ion applications turned out to be most effective when the induction medium was enriched with 25 µM of AgNO3 and left to obtain the highest number of embryo-like structures and green plantlets (0.8/100 anthers and 0.2/100 anthers, respectively). Therefore, more attention should be paid to the possibilities of adjusting the media nutrient composition, as this may be the only way to significantly increase the efficiency of this method.

13.
Int J Mol Sci ; 21(18)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971899

RESUMO

The oat × maize chromosome addition (OMA) lines, as hybrids between C3 and C4 plants, can potentially help us understand the process of C4 photosynthesis. However, photosynthesis is often affected by adverse environmental conditions, including drought stress. Therefore, to assess the functioning of the photosynthetic apparatus in OMA lines under drought stress, the chlorophyll content and chlorophyll a fluorescence (CF) parameters were investigated. With optimal hydration, most of the tested OMA lines, compared to oat cv. Bingo, showed higher pigment content, and some of them were characterized by increased values of selected CF parameters. Although 14 days of drought caused a decrease of chlorophylls and carotenoids, only slight changes in CF parameters were observed, which can indicate proper photosynthetic efficiency in most of examined OMA lines compared to oat cv. Bingo. The obtained data revealed that expected changes in hybrid functioning depend more on the specific maize chromosome and its interaction with the oat genome rather than the number of retained chromosomes. OMA lines not only constitute a powerful tool for maize genomics but also are a source of valuable variation in plant breeding, and can help us to understand plant susceptibility to drought. Our research confirms more efficient functioning of hybrid photosynthetic apparatus than oat cv. Bingo, therefore contributes to raising new questions in the fields of plant physiology and biochemistry. Due to the fact that the oat genome is not fully sequenced yet, the mechanism of enhanced photosynthetic efficiency in OMA lines requires further research.


Assuntos
Avena , Cromossomos de Plantas , Cruzamentos Genéticos , Estresse Fisiológico , Zea mays , Avena/genética , Avena/metabolismo , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Desidratação , Zea mays/genética , Zea mays/metabolismo
14.
Life (Basel) ; 10(8)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32823849

RESUMO

The aim of the present study was to evaluate the effect of osmotic stress caused by polyethylene glycol (PEG) 6000 in hydroponic culture on wheat seedlings of drought-resistant Chinese Spring (CS) and drought-susceptible SQ1 cultivar, and to examine the alleviative role of exogenous polyamines (PAs) applied to the medium. The assessment was based on physiological (chlorophyll a fluorescence kinetics, chlorophyll and water content) as well as biochemical (content of carbohydrates, phenols, proline, salicylic and abscisic acid, activity of low molecular weight antioxidants) parameters, measured after supplementation with PAs (putrescine, spermidine and spermine) on the 3rd, 5th and 7th day of the treatment. The results indicate that PAs ameliorate the effects of stress, indirectly and conditionally inducing stress tolerance of wheat seedlings. In contrast to the susceptible SQ1, the resistant CS cultivar activated its protective mechanisms, adjusting the degree of their activation to the level of the stress, depending on the genetic resources of the plant. Increased accumulation of antioxidants in the resistant CS in response to stress after the application of PAs confirms the hypothesis that PAs are involved in the signaling pathway determining the antioxidative response and the tolerance of wheat plants to drought stress.

15.
Int J Mol Sci ; 21(12)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560105

RESUMO

The nucleus architecture of hybrid crop plants is not a well-researched topic, yet it can have important implications for their genetic stability and usefulness in the successful expression of agronomically desired traits. In this work we studied the spatial distribution of introgressed maize chromatin in oat × maize addition lines with the number of added maize chromosomes varying from one to four. The number of chromosome additions was confirmed by genomic in situ hybridization (GISH). Maize chromosome-specific simple sequence repeat (SSR) markers were used to identify the added chromosomes. GISH on 3-D root and leaf nuclei was performed to assess the number, volume, and position of the maize-chromatin occupied regions. We revealed that the maize chromosome territory (CT) associations of varying degree prevailed in the double disomic lines, while CT separation was the most common distribution pattern in the double monosomic line. In all analyzed lines, the regions occupied by maize CTs were located preferentially at the nuclear periphery. A comparison between the tissues showed that the maize CTs in the leaf nuclei are positioned closer to the center of the nucleus than in the root nuclei. These findings shed more light on the processes that shape the nucleus architecture in hybrids.


Assuntos
Avena/genética , Núcleo Celular/genética , Cromossomos de Plantas/genética , Zea mays/genética , Introgressão Genética , Hibridização in Situ Fluorescente , Repetições de Microssatélites , Melhoramento Vegetal , Folhas de Planta/genética , Raízes de Plantas/genética
16.
Int J Mol Sci ; 20(23)2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31805731

RESUMO

A doubled haploid population of 94 lines from the Chinese Spring × SQ1 wheat cross (CSDH) was used to evaluate additive and epistatic gene action effects on total phenolic content, grain yield of the main stem, grain number per plant, thousand grain weight, and dry weight per plant at harvest based on phenotypic and genotypic observations of CSDH lines. These traits were evaluated under moderate and severe drought stress and compared with well-watered plants. Plants were grown in pots in an open-sided greenhouse. Genetic parameters, such as additive and epistatic effects, affecting total phenolic content, were estimated for eight year-by-drought combinations. Twenty-one markers showed a significant additive effect on total phenolic content in all eight year-by-drought combinations. These markers were located on chromosomes: 1A, 1B, 2A, 2B, 2D, 3A, 3B, 3D, 4A, and 4D. A region on 4AL with a stable QTL controlling the phenolic content, confirmed by various statistical methods is particularly noteworthy. In all years and treatments, three markers significantly linked to QTLs have been identified for both phenols and yield. Thirteen markers were coincident with candidate genes. Our results indicated the importance of both additive and epistatic gene effects on total phenolic content in eight year-by-drought combinations.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Locos de Características Quantitativas , Estresse Fisiológico/genética , Triticum/genética , Cromossomos de Plantas/metabolismo , Desidratação/genética , Desidratação/metabolismo , Epistasia Genética , Regulação da Expressão Gênica de Plantas , Triticum/metabolismo
17.
Ecotoxicol Environ Saf ; 180: 12-22, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31059903

RESUMO

The study aimed at comparing metabolic reactions of a halophyte Aster tripolium to abiotic stresses. Profiling of endogenous phytohormones, soluble carbohydrates and stress-related amino acids was conducted in plants exposed to moderate and high salinity (150 and 300 mM NaCl), and heavy metal salts CdCl2 or PbCl2 (100 and 200 µM). High NaCl and Pb doses inhibited growth of A. tripolium (Stress Tolerance Index STI) of 37% and 32-35%, respectively. The plants tolerated moderate salinity and Cd (STI = 91% and STI = 83-96%, respectively). Toxic metals accumulated mainly in the roots but Cd translocation to the shoots was also observed. The stressors did not affect total concentrations of the main growth promoting phytohormones but we observed enhanced deactivation of auxins and gibberellins, and reduced accumulation of jasmonate precursor. ABA content increased under stress except for moderate salinity. A common reaction was also activation of osmotic adjustment, however it was disparately manifested under salinity and metallic stress. The distinct responses to salinity and metallic stresses involved changes in carbohydrate profile and altered interplay between salicylic acid content and the pool of active gibberellins. The content of active jasmonates diversified A. tripolium reactions to salt excess and each of the heavy metals. This parameter was linked to the accumulation of ethylene precursor. The results of the study can be used to decipher potential co-tolerance mechanism of this halophyte species to multiple environmental stresses.


Assuntos
Aster/efeitos dos fármacos , Metais Pesados/toxicidade , Reguladores de Crescimento de Plantas/metabolismo , Plantas Tolerantes a Sal/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Aster/metabolismo , Osmose , Salinidade , Plantas Tolerantes a Sal/metabolismo
18.
Planta ; 248(6): 1365-1381, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30116887

RESUMO

MAIN CONCLUSION: The results provide a significant verification of the activity of exogenously applied phytohormones: gibberellic acid, jasmonic acid, and brassinolide in the modulation of the plant's response to nickel treatment. The study investigated nickel accumulation and its toxicity to Daphne jasminea shoots cultured in vitro with or without exogenous supplementation with phytohormones: gibberellic acid (GA3), jasmonic acid (JA), and brassinolide (BL). The aim was to verify the modulatory effect of exogenous plant growth regulators (PGRs) on plant reaction to Ni excess. The combined action of Ni and PGRs was evaluated at the anatomical, ultrastructural, and biochemical levels. Nickel toxicity was manifested in decreased biomass accretion and growth tolerance index (83-53.6%), attributed to enhanced synthesis of growth inhibitors, mainly abscisic acid. As a defence reaction, endogenous gibberellins accumulated. Exogenous GA3 ameliorated the plant reaction to Ni stress, inducing proliferation and growth rate. Ni tolerance in the presence of GA3 was attributed to peroxisomal reactions that stimulated the synthesis of endogenous JA. In contrast, the application of BL caused enhanced Ni accumulation. Plants suffered from pronounced stress due to massive oxidation. The defence strategy of plants subjected to Ni and BL involved cell wall rearrangements. Exogenous JA stimulated the synthesis of active auxins and salicylic acid, contributing to enhanced mitotic activity within explants. However, JA disturbed the integrity of chloroplasts and lamellar compartments. Our study revealed that an action of exogenous PGRs may either enhance tolerance to Ni or increase metal toxicity in D. jasminea. Particularly in in vitro culture, where explants are subjected to external phytohormonal stimuli, the combined effects of supplemental PGRs may enhance stress and substantially affect plant development. Our results provide a significant verification of exogenous PGRs activity in the modulation of plant response to nickel.


Assuntos
Daphne/efeitos dos fármacos , Níquel/toxicidade , Reguladores de Crescimento de Plantas/farmacologia , Ácido Abscísico/farmacologia , Brassinosteroides/farmacologia , Ciclopentanos/farmacologia , Daphne/química , Daphne/crescimento & desenvolvimento , Daphne/ultraestrutura , Giberelinas/farmacologia , Ácidos Indolacéticos/farmacologia , Níquel/metabolismo , Oxilipinas/farmacologia , Ácido Salicílico/farmacologia , Esteroides Heterocíclicos/farmacologia , Madeira
19.
PeerJ ; 6: e5107, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29967749

RESUMO

BACKGROUND: The oat × maize addition (OMA) lines are used for mapping of the maize genome, the studies of centromere-specific histone (CENH3), gene expression, meiotic chromosome behavior and also for introducing maize C4 photosynthetic system to oat. The aim of our study was the identification and molecular-cytogenetic characterization of oat × maize hybrids. METHODS: Oat DH lines and oat × maize hybrids were obtained using the wide crossing of Avena sativa L. with Zea mays L. The plants identified as having a Grande-1 retrotransposon fragment, which produced seeds, were used for genomic in situ hybridization (GISH). RESULTS: A total of 138 oat lines obtained by crossing of 2,314 oat plants from 80 genotypes with maize cv. Waza were tested for the presence of maize chromosomes. The presence of maize chromatin was indicated in 66 lines by amplification of the PCR product (500 bp) generated using primers specific for the maize retrotransposon Grande-1. Genomic in situ hybridization (GISH) detected whole maize chromosomes in eight lines (40%). All of the analyzed plants possessed full complement of oat chromosomes. The number of maize chromosomes differed between the OMA lines. Four OMA lines possessed two maize chromosomes similar in size, three OMA-one maize chromosome, and one OMA-four maize chromosomes. In most of the lines, the detected chromosomes were labeled uniformly. The presence of six 45S rDNA loci was detected in oat chromosomes, but none of the added maize chromosomes in any of the lines carried 45S rDNA locus. Twenty of the analyzed lines did not possess whole maize chromosomes, but the introgression of maize chromatin in the oat chromosomes. Five of 66 hybrids were shorter in height, grassy type without panicles. Twenty-seven OMA lines were fertile and produced seeds ranging in number from 1-102 (in total 613). Sixty-three fertile DH lines, out of 72 which did not have an addition of maize chromosomes or chromatin, produced seeds in the range of 1-343 (in total 3,758). Obtained DH and OMA lines were fertile and produced seeds. DISCUSSION: In wide hybridization of oat with maize, the complete or incomplete chromosomes elimination of maize occur. Hybrids of oat and maize had a complete set of oat chromosomes without maize chromosomes, and a complete set of oat chromosomes with one to four retained maize chromosomes.

20.
PeerJ ; 6: e5063, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30002956

RESUMO

BACKGROUND: Wheat is widely affected by drought. Low excised-leaf water loss (ELWL) has frequently been associated with improved grain yield under drought. This study dissected the genetic control of ELWL in wheat, associated physiological, morphological and anatomical leaf traits, and compared these with yield QTLs. METHODS: Ninety-four hexaploid wheat (Triticum aestivum L.) doubled haploids, mapped with over 700 markers, were tested for three years for ELWL from detached leaf 4 of glasshouse-grown plants. In one experiment, stomata per unit area and leaf thickness parameters from leaf cross-sections were measured. QTLs were identified using QTLCartographer. RESULTS: ELWL was significantly negatively correlated with leaf length, width, area and thickness. Major QTLs for ELWL during 0-3 h and 3-6 h were coincident across trials on 3A, 3B, 4B, 5B, 5D, 6B, 7A, 7B, 7D and frequently coincident (inversely) with leaf size QTLs. Yield in other trials was sometimes associated with ELWL and leaf size phenotypically and genotypically, but more frequently under non-droughted than droughted conditions. QTL coincidence showed only ELWL to be associated with drought/control yield ratio. DISCUSSION: Our results demonstrated that measures of ELWL and leaf size were equally effective predictors of yield, and both were more useful for selecting under favourable than stressed conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...